成像中的变分法-167
成像中的变分法-167作者:斯科泽 开 本:16开 书号ISBN:9787510058424 定价:59.0 出版时间:2013-07-01 出版社:世界图书出版公司 |
成像中的变分法-167 本书特色
《成像中的变分法(英文)》由世界图书出版公司北京公司出版。
成像中的变分法-167 内容简介
Imagmg is an interdisciplinary research area with profound applications in many areas of science, engineering, technology, and medicine. The most primitrve form of imaging is visual in,spection, which has dominated the area before the technical and computer revolution era. Today, computer imaging covers various aspects of data tiltering, pattern recognition, feature extraction., co'mputer aided mspection, and medical diagnosis. The above mentioned areas are treated in different scientific communities such as Imagin,g, In,verse Problems, Computer Vision, Signal and Image Processing,…, but all share the common thread of recovery of an object or one of its properties.
成像中的变分法-167 目录
Part I Fundamentals of Imagmg1 Case Examples of Imaging
1.1 Denoising
1.2 Chopping and Nodding
1.3 Image Inpainting
1.4 X-ray-Based Computerized Tomography
1.5 Thermoacoustic Computerzed Tomography
1.6 Schlieren Tomography
2 Image and Noise Models
2.1 Basic Concepts of Statistics
2.2 Digitzed (Discrete) Images
2.3 Noise Models
2.4 Priors for Images
2.5 Maximum A Posteriori Estimation
2.6 MAP Rstimation for Noisy Images
Part I Fundamentals of Imagmg
1 Case Examples of Imaging
1.1 Denoising
1.2 Chopping and Nodding
1.3 Image Inpainting
1.4 X-ray-Based Computerized Tomography
1.5 Thermoacoustic Computerzed Tomography
1.6 Schlieren Tomography
2 Image and Noise Models
2.1 Basic Concepts of Statistics
2.2 Digitzed (Discrete) Images
2.3 Noise Models
2.4 Priors for Images
2.5 Maximum A Posteriori Estimation
2.6 MAP Rstimation for Noisy Images
Part II Regularization
3 Variational R,egularzation Methods for the Solution of Inverse Problems
3.1 Quadratic Tikhonov R;egularization in Hilbert Spaces
3.2 Variational R,egularization Methods in Banach Spaces
3.3 Regularization with Sparsity Constraints
3.4 Linear Inverse Problems with Convex Constraints
3.5 Schlieren Tomography.
3.6 Further Literature on Regularization Methods for Inverse Problems
4 Convex Regularization Methods for Denoising
4.1 The Number
4.2 Characterization of Minimizers
4.3 One-dimensional Results
4.4 Taut String Algorithm
4.5 Mumford-Shah Regularization
4.6 Recent Topics on Denoising with Variational Methods
5 Variational Calculus for Non-convex R,egularization
5.1 Direct Methods
5.2 Relaxation on Sobolev Spaces
5.3 Relaxation on BV
5.4 Applications in Non-convex Regularization
5.5 One-dimensional Results
5.6 Examples
6 Serru-group Theory and Scale Spaces
6.1 Linear Semi-group Theory
6.2 Non-linear Semi-groups in Hilbert Spaces
6.3 Non-Iinear Semi-groups in Banach Spaces
6.4 Axiomatic Approach to Scale Spaces
6.5 Evolution by Non-convex Energy Functionals
6.6 Enhancing
7 Inverse Scale Spaces
7.1 Iterative Tikhonov Regularization
7.2 Iterative Regularization with Bregman Distances
7.3Recent Topics on Evolutionary Equations for Inverse Problems
Part III Mathematical Foundations
8 Functional Analysis
8.1 General Topology
8.2 Locally Convex Spaces
8.3 Bounded Linear Operators and Functionals
8.4 Linear Operators in Hilbert Spaces
8.5 Weak and Weak Topologies
8.6 Spaces of Differentiable Functions
9 Weakly Differentiable Functions
9.1 Measure and Integration Theory
9.2 Distributions and Distributional Derivatives
9.3 Geometrical Properties of Functions and Domains
9.4 Sobolev Spaces
10 Convex Analysis and Calculus of Variations
References
Nomenclature
Index
自然科学 数学 数学分析
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |