几何VI-黎曼几何

首页 > 图书 > 科技/2020-07-11 / 加入收藏 / 阅读 [打印]
几何VI-黎曼几何

几何VI-黎曼几何

作者:波斯特尼科夫

开 本:16开

书号ISBN:9787030235039

定价:198.0

出版时间:2009-01-01

出版社:科学出版社


3.Left—Invariant Connections oa Lie Group
4.CartaConnections
5.Left CartaConnection
6.Right—Invariant Vector Fields
7.Right CartaConnection

Chapter 7.Lie Functor
1.Categories
2.Functors
3.Lie Functor
4.Kernel and Image of a Lie Group Homomorphism
5.Campbell—Hausdorff Theorem
6.DynkiPolynomials
7.Local Lie Groups
8.Bijectivity of the Lie Functor

Chapter 8.Affine Fields and Related Topics
1.Affine Fields
2.Dimensioof the Lie Algebra of Affine Fields
3.Completeness of Affine Fields
4.Mappings of Left and Right Translatiooa Symmetric Space
5.Derivations oManifolds with Multiplication
6.Lie Algebra of Derivations
7.Involutive Automorphism of the DerivatioAlgebra of a Symmetric Space
8.Symmetric Algebras and Lie Ternaries
9.Lie Ternary of a Symmetric Space

Chapter 9.CartaTheorem
1.Functor s
2.Comparisoof the Functor s with the Lie Functor
3.Properties of the Functor s
4.Computatioof the Lie Ternary of the Space
5.Fundamental Group of the Quotient Space
6.Symmetric Space with a GiveLie Ternary
7.Coverings
8.CartaTheorem
9.Identificatioof Homogeneous Spaces with Quotient Spaces
10.Trauslations of a Symmetric Space
11.Proof of the CartaTheorem

Chapter 10.Palais and Kobayashi Theorems
1.Infinite—Dimensional Manifolds and Lie Groups
2.Vector Fields Induced by a Lie Group Action
3.Palais Theorem
4.Kobayashi Theorem
5.Affine Automorphism Group
6.Automorphism Group of a Symmetric Space
7.TranslatioGroup of a Symmetric Space

Chapter 11.Lagrangians iRiemanniaSpaces
1.Riemanniaand Pseudo—RiemanniaSpaces
2.RiemanniaConnections
3.Geodesics ia RiemanniaSpace
4.Simplest Problem of the Calculus of Variations
5.Euler—Lagrange Equations
6.Minimum Curves and Extremals
7.Regular Lagrangians
8.Extremals of the Energy Lagrangian

Chapter 12.Metric Properties of Geodesics
1.Length of a Curve ia RiemanniaSpace
2.Natural Parameter
3.RiemanniaDistance and Shortest Arcs
4.Extremals of the Length Lagrangian
5.RiemanniaCoordinates
6.Gauss Lemma
7.Geodesics are Locally Shortest Arcs
8.Smoothness of Shortest Arcs
9.Local Existence of Shortest Arcs
10.Intrinsic Metric
11.Hopf—Rinow Theorem

Chapter 13.Harmonic Functionals and Related Topics
1.RiemanniaVolume Element
2.Discriminant Tensor
3.Foss—Weyl Formula
4.Case n=2
5.Laplace Operator oa RiemanniaSpace
6.The GreeFormulas
7.Existence of Harmonic Functions with a Nonzero Differential
8.Conjugate Harmonic Functions
9.Isothermal Coordinates
10.Semi—CartesiaCoordinates
11.CartesiaCoordinates
……
Chapter 14.Minimal Surfaces
Chapter 15.Curvature iRiemanniaSpace
Chapter 16.GaussiaCurvature
Chapter 17.Some Special Tensors
Chapter 18.Surfaces with Conformal Structure
Chapter 19.Mappings and Submanifolds Ⅰ
Chapter 20.Submanifolds Ⅱ
Chapter 21.Fundamental Forms of a Hypersurface
Chapter 22.Spaces of Constant Curvature
Chapter 23.Space Forms
Chapter 24.Four—Dimensional Manifolds
Chapter 25.Metrics oa Lie Group Ⅰ
Chapter 26.Metrics oa Lie Group Ⅱ
Chapter 27.Jacobi Theory
Chapter 28.Some Additional Theorems Ⅰ
Chapter 29.Some Additional Theorems Ⅱ
Chapter 30.Smooth Manifolds
Chapter 31.Tangent Vectors
Chapter 32.Submanifolds of a Smooth Manifold
Chapter 33.Vector and Tensor Fields.Differential Forms
Chapter 34.Vector Bundles
Chapter 35.Connections oVector Bundles
Chapter 36.Curvature Tensor
Suggested Reading
Index 几何VI-黎曼几何

 2/2   首页 上一页 1 2

自然科学 数学 几何与拓扑

在线阅读