R语言商务数据分析实战(本科教材)

首页 > 图书 > 教材教辅/2020-09-24 / 加入收藏 / 阅读 [打印]
R语言商务数据分析实战(本科教材)

R语言商务数据分析实战(本科教材)

作者:韩宝国 张良均

开 本:16开

书号ISBN:9787115474483

定价:

出版时间:2018-04-01

出版社:人民邮电



8.5.5 任务实现 173

小结 176

实训 176

实训1 清洗酒店评论原始数据 176

实训2 对酒店评论数据进行预处理 176

实训3 使用LDA模型建模并分析酒店评论 177

课后习题 177

第9章 餐饮企业综合分析 179

任务9.1 了解餐饮企业分析需求 179

9.1.1 分析餐饮企业现状与需求 180

9.1.2 了解餐饮企业数据基本状况 181

9.1.3 熟悉餐饮企业数据分析的步骤与流程 183

任务9.2 统计餐饮菜品数据 184

9.2.1 统计每日用餐人数与销售额 184

9.2.2 统计菜品热销度 190

9.2.3 统计菜品的毛利率 191

9.2.4 任务实现 192

任务9.3 使用ARIMA算法预测销售额 194

9.3.1 检验平稳性和纯随机性 194

9.3.2 构建ARIMA模型 196

9.3.3 任务实现 198

任务9.4 使用协同过滤算法实现菜品的智能推荐 201

9.4.1 选取特征 202

9.4.2 使用基于物品的智能推荐算法进行推荐 202

9.4.3 了解基于用户的智能推荐算法 203

9.4.4 分析协同过滤结果 203

9.4.5 任务实现 204

任务9.5 使用Apriori算法实现菜品的关联分析 207

9.5.1 构建Apriori模型 207

9.5.2 分析关联规则结果 209

9.5.3 任务实现 210

任务9.6 使用K-Means算法进行客户价值分析 214

9.6.1 构建关键特征 214

9.6.2 构建K-Means模型 214

9.6.3 分析K-Means模型结果 215

9.6.4 任务实现 217

任务9.7 用决策树算法实现餐饮客户流失预测 219

9.7.1 了解客户流失 219

9.7.2 了解决策树算法 220

9.7.3 构建客户流失特征 221

9.7.4 分析决策树模型结果 223

9.7.5 任务实现 223

小结 226

实训 226

实训1 使用ARIMA模型预测网站访问量 226

实训2 使用决策树算法实现运营商客户流失预测 227

实训3 使用协同过滤算法实现网站的智能推荐 227

实训4 使用Apriori算法实现网站的关联分析 227

实训5 使用K-Means算法实现运营商客户价值分析 228

课后习题 228

R语言商务数据分析实战(本科教材) 作者简介

张良均,高 级信息系统项目管理师,泰迪杯全国大学生数据挖掘竞赛(www.tipdm.org)发起人。华南师范大学、广东工业大学兼职教授,广东省工业与应用数学学会理事。兼有大型高科技企业和高校的工作经历,主要从事大数据挖掘及其应用的策划、研发及咨询培训。全国计算机技术与软件专业技术资格(水平)考试继续教育和CDA数据分析师培训讲师。发表数据挖掘相关论文数二十余篇,已取得国家发明专利12项,主编《Hadoop大数据分析与挖掘实战》《Python数据分析与挖掘实战》《R语言数据分析与挖掘实战》等多本畅销图书,主持并完成科技项目9项。获得SAS、SPSS数据挖掘认证及Hadoop开发工程师证书,具有电力、电信、银行、制造企业、电子商务和电子政务的项目经验和行业背景。行、制造企业、电子商务和电子政务的项目经验和行业背景。

R语言商务数据分析实战(本科教材)

 3/3   首页 上一页 1 2 3

教材 研究生/本科/专科教材 工学

在线阅读

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
上一篇:公司法学(本科教材)     下一篇:明清小说(第二版)