挑战思维极限-勾股定理的365种证明
挑战思维极限-勾股定理的365种证明作者:李迈新 开 本:32开 书号ISBN:9787302458791 定价:39.8 出版时间:2016-12-01 出版社:清华大学出版社 |
挑战思维极限-勾股定理的365种证明 本书特色
本书主要介绍了勾股定理的 365 种证明方法, 并按证法的类型进行归纳、整理和总结, 让 读者有一个全面而系统的了解. 书中大多数证法用到的知识不超过初中几何的教学范围, 许多证法思路巧妙, 别具一格, 对提高读者的几何素养大有裨益. 本书可以作为广大中学师生和数学爱好者的参考读物.
挑战思维极限-勾股定理的365种证明 内容简介
勾股定理是初等几何中遇到的*个比较重要的定理,该定理是许多后续定理的基础。1977年的高考试题中,有一道题目的内容就是“证明勾股定理”,出题人是我国著名数学家潘承洞。而勾股定理的证明方法也是多种多样,各有特色,国外已经有学者整理出了该定理的300多个证法,而国内目前列出了近50个证法。本书精选了有代表性的365种证法。这些证法大多只需初中水平,各种思维模式能让读者脑洞大开,挑战思维极限。
挑战思维极限-勾股定理的365种证明 目录
第1 章分块法...................................................................................... 1 1.1 分块对应法............................................................................. 2 1.2 镶嵌法.................................................................................... 8 1.3 十字分块法............................................................................12 第2 章割补法.....................................................................................17 第3 章搭桥法.....................................................................................23 第4 章“化积为方”法.........................................................................38 第5 章等积变换法..............................................................................45 第6 章拼摆法.....................................................................................57 第7 章增积法.....................................................................................78 第8 章消去法.....................................................................................95 8.1 倍积法...................................................................................95 8.2 面积比例法..........................................................................102 第9 章同积法...................................................................................111 第10 章射影法.................................................................................131 10.1 作斜边垂线的证法..............................................................131 10.2 作直角边垂线的证法...........................................................139 第11 章长度法.................................................................................142 第12 章方程法.................................................................................152 第13 章平方差法..............................................................................157 第14 章辅助圆法..............................................................................163 第15 章相似转化法..........................................................................172 第16 章间接证法..............................................................................177 16.1 反证法...............................................................................177 16.2 同一法...............................................................................178 第17 章解析法.................................................................................183 17.1 坐标法...............................................................................183 17.2 参数法...............................................................................191 17.3 三角函数法........................................................................193 第18 章特例法.................................................................................198 第19 章泛化法.................................................................................208 附录A 证法出处汇总.........................................................................232 附录B 勾股定理的365 种证明有用吗?..............................................243 参考文献..............................................................................................246 后记..................................................................................................... 247
自然科学 数学 数学理论
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:离散数学及其应用-原书第7版-本科教学版
下一篇:数值分析
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |