数值线性代数及其应用

首页 > 图书 > 人文社科类图书/2020-06-21 / 加入收藏 / 阅读 [打印]
数值线性代数及其应用

数值线性代数及其应用

作者:Xiao-qing Jin,Yi-min

开 本:24cm

书号ISBN:9787030139542

定价:88.0

出版时间:2005-08-01

出版社:科学出版社

数值线性代数及其应用 本书特色

Numerical linear algebra, also called matrix computation, has beea cen-ter of scientific and engineering computing since 1946, the first modercom-puter was born. Most of problems iscience and engineering finally becomeproblems imatrix computation. Therefore, it is important for us to study nu-merical linear algebra. This book gives aelementary introductioto matrixcomputatioand it also includes some new results obtained irecent years.

数值线性代数及其应用 内容简介

POD产品说明: 1. 本产品为按需印刷(POD)图书,实行先付款,后印刷的流程。您在页面购买且完成支付后,订单转交出版社。出版社根据您的订单采用数字印刷的方式,单独为您印制该图书,属于定制产品。 2. 按需印刷的图书装帧均为平装书(含原为精装的图书)。由于印刷工艺、彩墨的批次不同,颜色会与老版本略有差异,但通常会比老版本的颜色更准确。原书内容含彩图的,统一变成黑白图,原书含光盘的,统一无法提供光盘。 3. 按需印刷的图书制作成本高于传统的单本成本,因此售价高于原书定价。 4. 按需印刷的图书,出版社生产周期一般为15个工作日(特殊情况除外)。请您耐心等待。 5. 按需印刷的图书,属于定制产品,不可取消订单,无质量问题不支持退货。

数值线性代数及其应用 目录

Preface
Chapter 1 Introduction
1.1 Basic symbols
1.2 Basic problems iNLA
1.3 Why shall we study numerical methods?
1.4 Matrix factorizations (decompositions)
1.5 Perturbatioand error analysis
1.6 Operatiocost and convergence rate
Exercises

Chapter 2 Direct Methods for Linear Systems
2.1 Triangular linear systems and LU factorization
2.2 LU factorizatiowith pivoting
2.3 Cholesky factorization
Exercises

Chapter 3 Perturbatioand Error Analysis
3.1 Vector and matrix norms
3.2 Perturbatioanalysis for linear systems
3.3 Error analysis ofloating point arithmetic
3.4 Error analysis opartial pivoting
Exercises

Chapter 4 Least Squares Problems
4.1 Least squares problems
4.2 Orthogonal transformations
4.3 QR decomposition
Exercises

Chapter 5 Classical Iterative Methods
5.1 Jacobi and Gauss-Seidel method
5.2 Convergence analysis
5.3 Convergence rate
5.4 SOR method
Exercises

Chapter 6 Krylov Subspace Methods
6.1 Steepest descent method
6.2 Conjugate gradient method
6.3 Practical CG method and convergence analysis
6.4 Preconditioning
6.5 GMRES method
Exercises

Chapter 7 Nonsymmetric Eigenvalue Problems
7.1 Basic properties
7.2 Power method
7.3 Inverse power method
7.4 QR method
7.5 Real versioof QR algorithm
Exercises

Chapter 8 Symmetric Eigenvalue Problems
8.1 Basic spectral properties
8.2 Symmetric QR method
8.3 Jacobi method
8.4 Bisectiomethod
8.5 Divide-and-conquer method
Exercises

Chapter 9 Applications
Bibliography
Index 数值线性代数及其应用

自然科学 数学 代数数论组合理论

在线阅读