FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN
FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN作者:郭家杰,李国民 开 本:其他 书号ISBN:9787568040549 定价:128.0 出版时间:2018-10-01 出版社:华中科技大学出版社 |
FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN 本书特色
This book formulates the large deformation of a 3-D compliant beam as a boundary value problem (BVP). Unlike other methods, such as finite element (FE) method, that formulate problems based on displacements and/or rotational angles, the BVP formulation has been derived using curvatures that are more fundamental in presenting nonlinear geometries. Since in the case of finite rotation, superposition holds for curvatures but not for rotational angles, the model is much simpler and the resulting computational process is more efficient. The above advantages have been employed in this research to analyze compliant mechanism designs using curvature-based beam models. Along with the method of deriving the compliant members in the same global reference frame, a generalized constraint acting on a compliant mechanism is presented to replace traditional boundary constraints (such as fixed, pinned or sliding constraint) where none or only one degree of freedom (DOF) is allowed. Inspired by the dexterity of a natural biological joint that offers efficient multi-axis rotation, this research extends to the modeling method of a generalized constraint (or referred to here as a bio-joint constraint) to develop designs emulating commonly observed human motions of multi-DOFs . Using a multiple shooting method (MSM), the BVP is treated as an initial value problem and higher order accuracy can be achieved than finite element (FE) methods.
FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN 内容简介
This book formulates the large deformation of a 3-D compliant beam as a boundary value problem (BVP). Unlike other methods, such as finite element (FE) method, that formulate problems based on displacements and/or rotational angles, the BVP formulation has been derived using curvatures that are more fundamental in presenting nonlinear geometries. Since in the case of finite rotation, superposition holds for curvatures but not for rotational angles, the model is much simpler and the resulting computational process is more efficient. The above advantages have been employed in this research to analyze compliant mechanism designs using curvature-based beam models. Along with the method of deriving the compliant members in the same global reference frame, a generalized constraint acting on a compliant mechanism is presented to replace traditional boundary constraints (such as fixed, pinned or sliding constraint) where none or only one degree of freedom (DOF) is allowed. Inspired by the dexterity of a natural biological joint that offers efficient multi-axis rotation, this research extends to the modeling method of a generalized constraint (or referred to here as a bio-joint constraint) to develop designs emulating commonly observed human motions of multi-DOFs . Using a multiple shooting method (MSM), the BVP is treated as an initial value problem and higher order accuracy can be achieved than finite element (FE) methods.
FLEXONICS FOR MANUFACTURING AND ROBOTICS:MODELING, DESIGN AN 目录
Acknowledgements/ii Table of contents/iii LIST OF TABLES/vi LIST OF FIGURES/vii List of SYMBOLS/xi List of ABBREVIATIONS/xiii Preface/xv CHAPTER I Introduction/1 1.1 Background and Motivation/1 1.2 Problem Description and Objectives/1 1.3 Review of Related Work/2 1.3.1 Compliant mechanisms/3 1.3.2 Joint constraint/4 1.3.3 Numerical methods for boundary value problems/6 1.3.4 Flexible robotics for structural health monitoring/7 1.3.5 Human-centered equipment (Exoskeleton)/9 1.3.6 Process state monitoring for manufacturing/10 1.3.7 Poultry-meat processing/13 1.4 Book Outline/14 CHAPTER II Fundamentals of mathematics/15 2.1 Differential Geometry/15 2.2 Curvature of a 3D Beam/16 2.3 Kinematics of a 3D Beam/18 2.4 Kinematics of an Annular Plate/23 2.5 Multiple Shooting Method/26 2.6 Summary/27 CHAPTER III Flexible Elements/28 3.1 Two-dimensional Beam/28 3.2 Three-dimensional Beam/31 3.3 Annular Plate/38 3.4 General Constraint/44 3.5 Summary/54 CHAPTER IV Flexonic Mobile Node/55 4.1 Design Concept/55 4.1.1 Dimension/56 4.1.2 Attachment/57 4.1.3 Flexibility/57 4.2 Functionalities/59 4.2.1 Sensor attachment/60 4.2.2 Convex corner negotiation (2D)/63 4.2.3 Convex corner negotiation (3D)/66 4.2.4 Concave corner negotiation/69 4.2.5 Environment monitoring/70 4.3 Experimental Validation/74 4.3.1 First prototype of FMN/74 4.3.2 Second prototype of FMN/82 4.4 Structural Health Monitoring/85 4.4.1 Steel frame structure/86 4.4.2 Space frame bridge/88 4.5 Summary/93 CHAPTER V Intelligent Manufacturing/94 5.1 Dynamic Analysis/94 5.1.1 Parametric Effects on |A(ωnm)| (DC1)/96 5.1.2 Illustrative example (DC1)/97 5.1.3 Numerical Verification (DC1 and DC2)/99 5.2 Parameter Identification and Sensing Configuration/101 5.2.1 Modal Damping Coefficients/102 5.2.2 Step Response/104 5.2.3 Robustness of Sensor Performance/105 5.2.4 Sensor Configuration Design/106 5.3 Formulation of Field Reconstruction/108 5.3.1 Field Reconstruction Algorithm/110 5.3.2 Numerical Verification/111 5.3.3 Numerical Evaluation of Reconstruction Algorithm/113 5.4 Experiment Results and Illustrative Application/114 5.4.1 Free Vibration of Non-rotating Plate/115 5.4.2 Field Reconstruction for Machining/118 5.5 Summary/121 CHAPTER VI Bio-inspired Exoskeleton/122 6.1 Human Knee Kinematics/122 6.2 Knee Joint Dynamics/125 6.3 Knee-exoskeleton Coupling/129 6.3.1 Coupled Kinematics/131 6.3.2 Coupled Dynamics/132 6.4 Experimental Investigation/132 6.4.1 Design Configurations/133 6.4.2 Experimental Test Bed/134 6.4.3 Experimental Methods/135 6.4.4 Results and Discussion/137 6.5 Summary/145 CHAPTER VII Musculoskeleton Modeling/146 7.1 Musculoskeletal System/146 7.1.1 Coordinates/147 7.1.2 Bio-joint Constraint/148 7.1.3 Clavicle Model/150 7.1.4 Soft Tissue Mechanics/154 7.2 Experimental Investigation/155 7.2.1 Elastic modulus of clavicle/155 7.2.2 Ligament mechanics/159 7.3 Illustrative Application to Wing Manipulation/162 7.4 Summary/165 References/167 Authors/176
工业技术 机械仪表工业 机械设计、计算与制图
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |