局部群表示论.对应和Langlands-Shahidi方法
局部群表示论.对应和Langlands-Shahidi方法作者:叶扬波、田野 开 本:16开 书号ISBN:9787030380326 定价:45.0 出版时间:2013-07-01 出版社:科学出版社 |
局部群表示论.对应和Langlands-Shahidi方法 内容简介
本书的5篇文章均由2011年6月在北京晨兴数学中心举办的群表示论研讨会的讲稿补充或重写而成,作者都是国际上数论与群表示论方面的著名专家。corinneblondel、colinj.bushnell和vincentsécherre的文章从不同的角度由浅入深地阐述了局部群表示理论的*新发展。davidmanderscheid的文章介绍了局部θ对应理论,而freydoonshahidi的文章则着重论述了eisenstein级数理论。这些文章都可以作为langlands纲领的相关领域的入门与深造的重要必读文献。
局部群表示论.对应和Langlands-Shahidi方法 目录
preface1 arithmetic of cuspidal representations colin j.bushnell
1.1 cuspidal representations by induction
1.1.1 background and notation
1.1.2 intertwining and hecke algebras
1.1.3 compact induction
1.1.4 an example
1.1.5 a broader context
1.2 lattices, orders and strata
1.2.1 lattices and orders
1.2.2 lattice chains
1.2.3 multiplicative structures
1.2.4 duality
1.2.5 strata and intertwining
1.2.6 field extensions
1.2.7 minimal elements
1.3 fundamental strata
1.3.1 fundamental strata
1.3.2 application to representations
1.3.3 the characteristic polynomial
1.3.4 nonsplit fundamental strata
1.4 prime dimension
1.4.1 a trivial case
1.4.2 the general case
1.4.3 the inducing representation
1.4.4 uniqueness
1.4.5 summary
1.5 simple strata and simple characters
1.5.1 adjoint map
1.5.2 critical exponent
1.5.3 construction
1.5.4 intertwining
1.5.5 definitions
1.5.6 interwining
1.5.7 motility
1.6 structure of cuspidal representations
1.6.1 trivial simple characters
1.6.2 occurrence of a simple character
1.6.3 heisenberg representations
1.6.4 a further restriction
1.6.5 end of the road
1.7 endo-equivalence and lifting
1.7.1 transfer of simple characters
1.7.2 endo-equivalence
1.7.3 invariants
1.7.4 tame lifting
1.7.5 tame induction map for endo-classes
1.8 relation with the langlands correspondence
1.8.1 the weil group
1.8.2 representations
1.8.3 the langlands correspondence
1.8.4 relation with tame lifting
1.8.5 ramification theorem
references
2 basic representation theory of reductive p-adic groups corinne blondel
2.1 smooth representations of locally profinite groups
2.1.1 locally profinite groups
2.1.2 basic representation theory
2.1.3 smooth representations
2.1.4 induced representations
2.2 admissible representations of locally profinite groups
2.2.1 admissible representations
2.2.2 haar measure
2.2.3 hecke algebra of a locally profinite group
2.2.4 coinvariants
2.3 schur?s lemma and z-compact representations
2.3.1 characters
2.3.2 schur?s lemma and central character
2.3.3 z-compact representations
2.3.4 an example
2.4 cuspidal representations of reductive p-adic groups
2.4.1 parabolic induction and restriction
2.4.2 parabolic pairs
2.4.3 cuspidal representations
2.4.4 iwahori decomposition
2.4.5 smooth irreducible representations are admissible
references
3 the bernstein decomposition for smooth complex representations of gln(f) vincent s?echerre
3.1 compact representations
3.1.1 the decomposition theorem
3.1.2 formal degree of an irreducible compact representation
3.1.3 proof of theorem 1.3
3.1.4 the compact part of a smooth representation of h
3.2 the cuspidal part of a smooth representation
3.2.1 from compact to cuspidal representations
3.2.2 the group h satisfies the finiteness condition (*)
3.2.3 the cuspidal part of a smooth representation
3.3 the noncuspidal part of a smooth representation
3.3.1 the cuspidal support of an irreducible representation
3.3.2 the decomposition theorem
3.3.3 further questions
3.4 modular smooth representations of gln(f)
3.4.1 the l ≠ p case
3.4.2 the l ≠ p case
references
4 lecturesonthelocaltheta correspondence david manderscheid
4.1 lecture 1
4.1.1 the heisenberg group
4.1.2 the weil representation
4.1.3 dependence on ψ
4.1.4 now suppose that w1 and w2 are symplectic spaces over f
4.1.5 models of ρψ and ωψ
4.2 lecture 2
自然科学 数学 数学理论
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |