物理学家用的张量和群论导论
物理学家用的张量和群论导论作者:杰夫基 开 本:32开 书号ISBN:9787510070266 定价:49.0 出版时间:2014-03-01 出版社:世界图书出版公司 |
物理学家用的张量和群论导论 本书特色
this book is composed of two parts: part i (chaps. i through 3) is an introduction to tensors and their physical applications, and part ii (chaps. 4 through 6) introduces group theory and intertwines it with the earlier material. both parts are written at the advanced-undergraduate/beginning graduate level, although in the course of' part ii the sophistication level rises somewhat. though the two parts differ somewhat in flavor,l have aimed in both to fill a (perceived) gap in the literaiure by connecting the component formalisms prevalent in physics calculations to the abstract but more conceptual formulations found in the math literature. my firm beliefis that we need to see tensors and groups in coordinates to get a sense of how they work, but also need an abstract formulation to understand their essential nature and organize our thinking about them.
物理学家用的张量和群论导论 目录
part i linear algebra and tensors
i a quicklntroduction to tensors
2 vectorspaces
2.1 definition and examples
2.2 span,linearlndependence,and bases
2.3 components
2.4 linearoperators
2.5 duaispaces
2.6 non-degenerate hermitian forms
2.7 non-degenerate hermitian forms and dual spaces
2.8 problems
3 tensors
3.1 definition and examples
3.2 changeofbasis
3.3 active and passive transformations
3.4 the tensor product-definition and properties
3.5 tensor products of v and v*
3.6 applications ofthe tensor product in classical physics
3.7 applications of the tensor product in quantum physics
3.8 symmetric tensors
3.9 antisymmetric tensors
3.10 problems
partll grouptheory
4 groups, lie groups,and lie algebras
4.1 groups-definition and examples
4.2 the groups ofclassical and quantum physics
4.3 homomorphismandlsomorphism
4.4 from lie groups to lie algebras
4.5 lie algebras-definition,properties,and examples
4.6 the lie algebras ofclassical and quantum physics
4.7 abstractliealgebras
4.8 homomorphism andlsomorphism revisited
4.9 problems
5 basic representation theory
5.1 representations: definitions and basic examples
5.2 furtherexamples
5.3 tensorproduet representations
5.4 symmetric and antisymmetric tensor product representations
5.5 equivalence ofrepresentations
5.6 direct sums andlrreducibility
5.7 moreonlrreducibility
5.8 thelrreducible representations ofsu(2),su(2) and s0(3)
5.9 reairepresentations andcomplexifications
5.10 the irreducible representations of st(2, c)nk, sl(2, c) ands0(3,1)o
5.11 irreducibility and the representations of 0(3, 1) and its double covers
5.12 problems
6 the wigner-eckart theorem and other applications
6.1 tensor operators, spherical tensors and representation operators
6.2 selection rules and the wigner-eckart theorem
6.3 gamma matrices and dirac bilinears
6.4 problems
appendix complexifications of real lie algebras and the tensor
product decomposition ofsl(2,c)rt representations
a.1 direct sums and complexifications oflie algebras
a.2 representations of complexified lie algebras and the tensor
product decomposition ofst(2,c)r representations
references
index
自然科学 物理学 理论物理学
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |