椭圆曲线上的有理点
椭圆曲线上的有理点作者:西尔弗曼 开 本:24开 书号ISBN:9787510086328 定价:59.0 出版时间:2015-01-01 出版社:世界图书出版公司 |
椭圆曲线上的有理点 内容简介
The theory of elliptic curves involves a blend of algebra,geometry, analysis,and number theory.This book stresses this interplay as it develops the basic theory,providing an opportunity for readers to appreciate the unity of modern mathematics.The book s accessibility,the informal writing style,and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
椭圆曲线上的有理点 目录
PrefaceComputer Packages
Acknowledgments
Introduction
CHAPTER 1
Geometry and Arithmetic
1.Rational Points on Conics
2.The Geometry of Cubic Curves
3.Weierstrass Normal Form
4.Explicit Formulas for the Group Law
Exercises
CHAPTER 2
Points of Finite Order
1.Points of Order Two and Three
2.Real and Complex Points on Cubic Curves
3.The Discriminant
4.Points of Finite Order Have Integer Coordinates
5.The Nagell—Lutz Theorem and Further Developments
Exercises
CHAPTER 3
The Group of Rational Points
1.Heights and Descent
2.The Height of P + P0
3.The Height of 2P
4.A Useful Homomorphism
5.Mordell's Tneorem
6.Examples and Further Developments
7.Singular Cubic Curves
Exercises
CHAPTER 4
Cubic Curves over Finite Fields
1.Rational Points over Finite Fields
2.A Theorem of Gauss
3.Points of Finite Order Revisited
4.A Factorization Algorithm Using Elliptic Curves
Exercises
CHAPTER 5
Integer Points on Cubic Curves
1.How Many Integer Points?
2.Taxicabs and Sums of Two Cubes
3.Thue's Theorem and Diophantine Approximation
4.Construction of an Auxiliary Polynomial
5.The Auxiliary Polynomialls Small
6.The Auxiliary Polynomial Does Not Vanish
7.Proof of the Diophantine Approximation Theorem
8.Further Developments
Exercises
CHAPTER 6
Complex Multiplication
1.Abelian Extensions of Q
2.Algebraic Points on Cubic Curves
3.A Galois Representation
4.Complex Multiplication
5.Abelian Extensions of Q(i)
Exercises
APPENDIX A
Projective Geometry
1.Homogeneous Coordinates and the Projective Plane
2.Curves in the Projective Plane
3.Intersections of Projective Curves
4.Intersection Multiplicities and a Proof of Bezout's Theorem
5.Reduction Modulo p
Exercises
Bibliography
List of Notation
Index
自然科学 数学 几何与拓扑
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:对称方法在偏微分方程中的应用
下一篇:黎曼几何和几何分析-第6版
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |