量子化学:基础原理和从头计算法
量子化学:基础原理和从头计算法作者:-- 开 本:128开 书号ISBN:9787030201867 定价: 出版时间:2016-05-01 出版社:科学出版社 |
量子化学:基础原理和从头计算法 内容简介
导语_点评_推荐词 《21世纪高等院校教材·量子化学:基本原理和从头计算法(下册)(第二版)》由科学出版社出版。《21世纪高等院校教材·量子化学:基本原理和从头计算法(下册)(第二版)》可作为量子化学专业研究生教材或者教学参考书,也可供对量子化学基础知识要求比较高的大学高年级学生以及相关专业的教师和科研人员学习参考。
量子化学:基础原理和从头计算法 目录
目录 第二版序**版序
第17章多粒子体系的二次量子化方法
17.1产生算符和湮灭算符
17.1.1粒子占据数表示
17.1.2产生算符和湮灭算符
17.1.3对易关系
17.1.4归一化粒子占据数态的获得(玻色子)
17.1.5粒子数算符
17.1.6归一化粒子占据数态的获得(费米子)
17.2场算符
17.3Schrodinger方程和力学量的二次量子化形式
17.3.1粒子占据数表示中的Schrodinger方程(玻色子)
17.3.2力学量的二次量子化形式
17.3.3粒子占据数表示中的Schrodinger方程(费米子)
17.4三种表象
17.4.1Schrodinger表象
17.4.2Heisenberg表象
17.4.3相互作用表象
17.4.4场算符在三种表象中的表示
17.5量子统计概要
17.5.1系综及平均
17.5.2统计算符(密度算符)
17.5.3平衡态系综中的统计算符
17.6Wick定理
17.6.1算符的正规乘积、编时乘积和收缩
17.6.2引理
17.6.3Wick定理
参考文献
第18章Green函数方法原理
18.1Green函数
18.1.1定义
18.1.2Green函数的运动方程
18.2微扰展开
18.2.1展开式
18.2.2Green函数展开的前几项
18.3图形方法(用坐标时间表示)
18.3.1图形表示
18.3.2由图写出数学表达式
18.4Green函数的周期性和Fourier变换
18.4.1准周期性
18.4.2Fourier变换
18.5图形方法(用坐标—频率表示)
18.5.1展开
18.5.2零级Green函数
18.5.3一级Green函数
18.5.4数学表达式
18.6图形方法(用量子数—频率表示)
18.6.1变换
18.6.2零级Green函数
18.6.3一级Green函数
18.6.4一般作图法和表达式规则
18.7零级Green函数的表达式
18.7.1有关公式回顾
18.7.2零级Green函数三种表示
18.8Dyson方程
18.8.1自能
18.8.2正规自能和非正规自能
18.8.3Dyson方程
18.9Green函数的传播特性
参考文献
第19章各种形式的Green函数及某些应用
19.1密度算符对外场微扰的线性响应
19.2响应函数、关联函数和谱函数
19.2.1力学量对于外场微扰的线性响应
19.2.2响应函数、关联函数和谱函数
19.2.3响应函数与关联函数的关系
19.2.4响应函数的Fourier变换,谱函数
19.3谱函数与各种特殊Green函数的关系及其Lehmann表示
19.3.1五种特殊Green函数
19.3.2关联函数与因果Green函数的关系
19.4Green函数的矩阵形式
19.4.1Liouville算符(超算符)
19.4.2Green函数的矩阵形式
19.4.3Green函数的产生算符和湮灭算符表示
19.4.4高阶;F(n)的产生
19.5Green函数的连分式表示
19.5.1投影算符
19.5.2Green函数的连分式表示
19.5.3超矢量和超矩阵
19.6一级连分式近似
19.6.1单粒子Green函数及其物理意义
19.6.2一级连分式近似
19.7二级连分式近似
19.8分子电离能及亲和能计算实例
19.8.1N2,H2O和H2S分子的电离能
19.8.2C2,P2,O3,SO2分子的亲和能
19.9双粒子Green函数与激发态的关系
参考文献
第20章置换群的表示
20.1置换群不可约表示的特征标
20.1.1不可约表示的标记,Young图和Young表
20.1.2子群与母群不可约表示特征标的关系
20.1.3求置换群不可约表示特征标的Frobenius公式
20.1.4图解方法
20.1.5不可约表示特征标的循环公式
20.2正交表示
20.2.1不可约表示按子群链的分解
20.2.2不可约正交表示矩阵的构造
20.3自然表示
20.3.1群代数
20.3.2置换群代数按左理想与双侧理想的分解
20.3.3自然表示
20.4内积与Clebsch—Gordan系数,外积
20.4.1不可约表示的内积及其约化
20.4.2Clebsch—Gordan系数
20.4.3外积表示及其约化
参考文献
第21章线性变换群的张量表示
21.1线性变换群表示空间的约化
21.1.1n维空间的线性变换群
21.1.2张量空间
21.1.3全线性群的张量表示
21.1.4张量空间按对称类的约化
21.1.5Young算符
21.2全线性群表示与置换群表示的联系
21.2.1全线性群张量表示矩阵的约化形式
21.2.2全线性群不可约张量表示的特征标
21.2.3线性群表示与置换群表示的特征标的关系
21.2.4全线性群直积表示的约化
21.2.5无自旋量子化学
21.3线性群不可约表示的分支律
21.3.1全线性群的张量表示系统
21.3.2全线性群、幺模群、酉群和特殊酉群的不可约表示间的关系
21.3.3GL(n,C)群的不可约表示限于其子群GL(n,—1,C)时的分支律
教材 研究生/本科/专科教材
在线阅读
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:汽车概论(第二版)(本科教材)
下一篇:医用化学(第2版)
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |