非晶态和纳米合金的化学镀-制备原理.微观结构和理论 |
|
2020-08-02 00:00:00 |
|
非晶态和纳米合金的化学镀-制备原理.微观结构和理论 本书特色
本书全面阐述了非晶态和纳米合金化学镀的制备原理(镀槽与稳定性,镀速及影响因素)、微观结构、机理、形成和形成区理论以及微观理论。本书突出原创,集中阐述了铁基化学镀合金镀层与非晶合金镀层形成和形成区理论等作者具有自主知识产权的成果,以及纳米合金化学镀、镀速统一分析、表面形貌及分析、形成和微观理论等内容,反映了国际化学镀发展的*内容。
作者以独特的视角讲述并分析了化学镀70 多年来的发展史。通过发现式写法,在阐述内容的同时,指出问题和发展方向,引导读者深入思考。
本书可供材料、物理、化学等相关学科科研技术人员、研究生,对科研和工业关心的公职与公众人士阅读。
非晶态和纳米合金的化学镀-制备原理.微观结构和理论 内容简介
本书侧重于化学镀(EP)重要的实际工艺、原理和理论问题,从材料科学的角度来描述EP合金镀层。具有以下几个特点: 1. 内容全面、独特,同类书中未有 目前已出版的同类书中多介绍样品或工件的前后处理、化学镀设备、EP废液的处理工艺,EP性能以及广泛应用等内容,但从未从材料的角度来描写镀层。本书中的主要内容恰好弥补了目前出版物中的空白,详细介绍各种EP镀层(纯金属、二元和多元合金,以及各种纳米合金镀层)的制备工艺,化学复合镀,纳米化学镀,内部成分和微结构,表面SEM结构,各种影响因素,铁基化学镀合金镀层,绿色化学镀,EP形成机理和动力学,EP非晶态合金形成理论和形成区,以及EP的微观理论等。尤其铁基化学镀合金镀层是作者具有自主知识产权的原创内容。为了突出独创特点,本书只论述了上述这些在同类图书中没有的内容,同类书中已涉及的内容全部舍弃。 2. 反映了国际化学镀发展的新进展 从上世纪40年代发现化学镀Ni至今,从未有人在论文或书中作出全面论述。本书以一章的内容,将整个发展史划分为4个阶段,做了详细论述(其缩写内容分两期已发表在英国的Trans. IFM 杂志上)。此外,纳米化学镀,Fe基合金化学镀,绿色化学镀,EP非晶合金镀层的形成理论和形成区理论,以及EP的微观理论,全都是崭新的内容,EP书籍中从未论述过的。书中都以专门的章来论述。 3. 内容丰富,资料来自全球2100多篇原始论文。 4.发现式写法,指出问题和发展方向,引导读者思考 写书很忌讳的恐怕就是只罗列出素材和数据,没有任何的解释,没有任何的来龙去脉、发展状况,没有指出尚存在的问题和可能的发展方向。本书作者极力避免在他的书中出现此等状况。因此,除了清晰地描述和说明实验事实、数据和结论之外,非常注重于定性定量解释,往往还有作者的评述。差不多每个问题都尽可能的叙述其发展历史和现状。清晰地指出尚存在的问题和应当努力的方向。目的不仅是让读者能够掌握已有的EP知识,更希望能够尽可能的引起他们的兴趣和思考,引导他们自己去考虑进一步的问题,去解决尚未解决的问题。
非晶态和纳米合金的化学镀-制备原理.微观结构和理论 目录
Preface xv
Part I History of Electroless Plating 1. History–From the Discovery of Electroless Plating to the Present 1.1 Discovery of Electroless Plating 4 1.1.1 Early Works 4 1.1.2 Brenner and Riddell’s Work 6 1.2 Early Stage of Development (1940s–1959) 9 1.2.1 Research Works 9 1.2.2 Patents Issued 10 1.2.3 Preliminary Applications 12 1.3 Slow Growth of Period (1960–1979) 12 1.3.1 Improvement of the Plating Bath 13 1.3.2 Various Electroless Plating Metals 17 1.3.3 Electroless Plating Cu 20 1.3.4 Deposition Substrate 23 1.3.5 Application 26 1.4 Rapid Development of Period (1980–1999) 26 1.4.1 Studying the Nature of Electroless Plating 26 1.4.2 Studying the Properties of Electroless Plating Deposits 27 1.4.3 Large-Scale Application in Many Industries 31 1.4.4 Investigation of Ternary and Multicomponent Alloys and Composites 33 1.4.5 Electroless Plating Began and Developed Rapidly in China 34 1.4.6 Electroless Plating Fe–B Based Alloys Have Been Proposed and Developed 35 1.5 In-Depth Development and Nanoelectroless Plating Stage (2000–Present) 36 1.5.1 In-Depth Investigation of the Mechanism and Theory in Electroless Plating 38 1.5.2 Rapid Development of Nanoelectroless Plating 38 1.6 Summary and Prospect 39 References 40
Part II Technology of Electroless Plating-Plating Bath, Critical Parameters, Deposition Rate,and Stability of Plating Bath 2. Electroless Plating Baths of Metals, Binary Alloys,and Multicomponent Alloys 2.1 General Consideration for Electroless Plating Bath Solution 51 2.2 Plating Bath of Electroless Pure Nickel and Nickel-Based Binary Alloys 53 2.2.1 Pure Ni and Co Metals 53 2.2.2 Ni–P 53 2.2.3 Ni–B 53 2.3 Cobalt-Based Binary Alloys 57 2.3.1 Co–P 57 2.3.2 Co–B 57 2.4 Cu and Copper-Based Binary Alloys 58 2.5 Au 58 2.6 Ag 58 2.7 Pd and Palladium-Based Binary Alloys 59 2.8 Pt and Platinum-Based Binary Alloys 59 2.9 Ru, Rh, Os, and Cr–P Binary Alloys 59 2.10 Group B Metals (Zn, Cd, In, Sn, Pb, As, Sb, and Bi) and a Few Binary Alloys of these Metals 62 2.11 Electroless Plating of Ternary Alloys 67 2.11.1 Ni–Me–P Alloy Plating Baths 67 2.11.2 Co–Me–P Alloy Plating Baths 74 2.11.3 Ni–Me–B Alloy Plating Baths 74 2.11.4 Co–Me–B Alloy Plating Baths 74 2.11.5 Other Ternary Alloy Plating Baths 89 2.12 Electroless Plating of Quaternary Alloys 90 2.12.1 Ni-Based Quaternary Alloy Plating Baths 90 2.12.2 Co-Based Quaternary Alloy Plating Baths 90 2.13 Electroless Plating Quinary and Multialloys 90 2.14 Summary 90 References 100
3. Electroless Composite Plating 3.1 General Considerations about ECP 109 3.2 Bath Solutions of ECP 110 3.2.1 Bath for Binary Alloy-Based ECP 110 3.2.2 Bath for Ternary Alloy-Based ECP 113 3.2.3 Bath for ECP With Two Kinds of Particles 116 3.3 Summary 116 References 138
4. Nano Electroless Plating 4.1 Bulk Nano EP Materials 144 4.1.1 Nano ECP 144 4.1.2 EP Three-Dimensional Nanostructured Materials (3D NSMs) 163 4.2 2D Nano EP Materials 172 4.2.1 EP 2D Nano Films 173 4.2.2 EP 2D Nanoplates 181 4.2.3 EP 2D Nanodisks 182 4.2.4 EP 2D Nanoshells and Nanosheets 183 4.2.5 EP 2D Nanowalls 184 4.2.6 EP 2D Nano Circles and Rings 185 4.2.7 EP 2D Nanohoneycomb 187 4.2.8 EP 2D Nanoline, Nanofi n Pattern, and 2D Nano Grating 188 4.3 Linear (1D) Nano EP Materials 191 4.3.1 EP Nanotubes 191 4.3.2 EP Nanowires 214 4.3.3 EP Nanorods 240 4.3.4 EP Nanobelts 246 4.4 Zero-Dimensional Nano EP Materials 250 4.4.1 EP Nanoparticles 251 4.4.2 EP Nanoparticle Arrays 262 4.4.3 EP Nanoparticles Other Than Spherical Shape 264 4.4.4 EP Core-Shell Nanoparticles 268 4.5 Summary 278 References 279
5. Electroless Plating Fe-Based Alloys 5.1 Why Electroless Plating Fe–B Alloys? 291 5.2 Discovery of EP Fe–B Alloys 292 5.2.1 The Plating Bath and Affective Parameters 294 5.2.2 Analysis of the Diffi culty in Obtaining EP Fe–B Alloys 295 5.2.3 Composition, Structure, and Properties of EP Fe–B Alloys 296 5.2.4 Formation Mechanism of EP Fe–B Alloys 303 5.2.5 Problems and Worthwhile Improvements for EP Fe–B Alloys 304 5.3 EP Binary Fe–B Alloys 305 5.4 EP Fe–B-Based Multicomponent Alloys 307 5.4.1 EP Fe–W–B Alloy Deposits 308 5.4.2 EP Fe–Mo–B Alloy Deposits 310 5.4.3 EP Fe–Sn–B Alloy Deposits 312 5.4.4 EP Fe–W–Mo–B Alloy Deposits 313 5.4.5 EP Fe–Ni–B Alloy Deposits 315 5.5 EP Fe–P Alloys 315 5.6 EP Fe–P-Based Ternary-Component Alloys 317 5.7 Summary 319 References 319
6. Impact Parameters and Deposition Rate 6.1 Effects of Plating Bath Components on Deposition Rate 324 6.1.1 Effect of Metal Salts 324 6.1.2 Effect of Reducing Agent 334 6.1.3 The Effect of Complexing Agent 337 6.1.4 Effect of Stabilizer 342 6.1.5 Effect of Accelerating Agent 349 6.1.6 The Effect of Surfactants 352 6.2 Effects of Operating Conditions 357 6.2.1 Effect of pH Value 357 6.2.2 Effect of Plating Temperature 361 6.2.3 Effect of Plating Time 362 6.3 Effects of other Technological Parameters 364 6.3.1 Effect of Stirring 364 6.3.2 Effect of Magnetic Field 372 6.3.3 Effect of Bath Loading 373 6.4 Summary 376 References 376
7. Green Electroless Plating 7.1 What is Green Electroless Plating? 383 7.2 Green Electroless Plating of EN 384 7.3 Green Electroless Plating on Cu 390 7.3.1 Hypophosphite 390 7.3.2 Glyoxylic Acid 393 7.3.3 DMAB 395 7.3.4 Sodium Bisulfate 397 7.3.5 Co2 and Fe2 397 7.3.6 Saccharide 400 7.3.7 Green Ligand for EP Cu 400 7.4 Green Electroless Plating Ag 401 7.5 Green Electroless Plating Au 403 7.6 Summary 406 References 406
Part III Composition, Microscopic Structure,and Surface Morphology of Electroless Deposits 8. Composition and Microstructure 8.1 Composition and Microstructures of EP Alloy Deposits 415 8.1.1 Ni–P Alloy Deposits 415 8.1.2 Other EP Binary Deposits 440 8.1.3 Binary Alloy-Based ECP Deposits 449 8.2 Composition and Microstructures of EP Ternary and Multicomponent Alloy Deposits 451 8.2.1 Effects of Metal Salts on Composition and Structure in Ternary and Quaternary Alloy Coatings 452 8.2.2 Effects of Reductant on Composition and Structure in Ternary and Quaternary Alloy Coatings 455 8.2.3 Effects of Complexing Agents on Composition and Structure in Ternary and Quaternary Alloy Coatings 458 8.2.4 Effects of pH Value on Composition and Structure in Ternary and Quaternary Alloy Coatings 459 8.2.5 Effects of Temperature on Composition and Structure in Ternary and Quaternary Alloy Coatings 462 8.2.6 Infl uence of Ultrasound on Composition and Structure of EN Deposits 464 8.3 Crystallization of EP Amorphous Alloys 467 8.3.1 Crystallization Process and Products of EP Alloys Deposits 468 8.3.2 Crystallization Temperature and Activation Energy of EP Alloy Deposits 482 8.3.3 Crystallization Transformation Kinetics of EP Alloy Deposits 495 8.4 Summary 498 References 498
9. Surface Morphologies 9.1 Skeleton Understanding of Surface Morphologies of the EP Alloy Coatings 505 9.1.1 What Magnifi cation Can See the Morphology Clearly? 505 9.1.2 What Are the Morphological Features for Ni–P Based Alloy Deposits? 508 9.1.3 What is the Infl uence of Alloying Elements on the Surface Morphology of Ni–P Based Alloy Deposits? 509 9.1.4 Is there a Quantitative Relationship Between the Particle Size and Alloy Composition? 510 9.1.5 Should the Surface Morphology of Electroless Amorphous Coatings Be a Distinctive Pattern or Featureless? 512 9.2 The Effect of Alloying Elements on SEM 514 9.2.1 The Surface Morphology of EP Pure Metals 514 9.2.2 The Surface Morphology of EP Binary Alloy Films 517 9.2.3 The Surface Morphology of EP Multicomponent Alloy Films 520 9.3 Surface Morphology of ECP Alloy Deposits 531 9.4 Effects of Various Parameters on SEM 536 9.4.1 Effects of the Concentration of Metal Salts on SEM 536 9.4.2 Effects of Reductant on SEM 540 9.4.3 Effects of Complexing Agents on SEM 542 9.4.4 Effects of Stabilizers on SEM 544 9.4.5 Effects of Surfactants on SEM 549 9.4.6 Effects of pH Values on SEM 555 9.4.7 Effects of Plating Temperature on SEM 559 9.4.8 Effects of Plating Time on SEM 562 9.4.9 The Effects of Heat Treatment on SEM 570 9.5 Summary 573 References 573
Part IV Kinetics, Mechanism, and Theory of Electroless Plating 10. Mechanism of Electroless Plating 10.1 The Existing Reaction Mechanism of EP Deposits 584 10.1.1 The So-Called Four Classical Mechanisms 584 10.1.2 Mixed Potential Theory 587 10.1.3 The Uniform Electrochemical Mechanism 596 10.2 Shortcomings and Defi ciencies of Existing Reaction Mechanisms of EP Deposits 597 10.3 Kinetics and Recent Progress 603 10.3.1 Real-Time Monitoring of Initial EP 605 10.3.2 Microstructure in Initial Stage of EP 609 10.3.3 Kinetics and Empirical Modeling of EP 615 10.4 Summary 623 References 625
11. Formation Theory and Formation Range of Electroless Amorphous Alloys 11.1 General Description of Formation of Electroless Amorphous Alloys 630 11.2 Formation Theory of Electroless Amorphous Alloys 633 11.2.1 A Brief Retrospect of the Quantitative Theory of Metallic Glass Formation 634 11.2.2 Formation Theory of Electroless Amorphous Alloy Systems 635 11.3 Formation Range of Electroless Amorphous Alloys: Experimental Facts and Theoretical Calculations 658 11.3.1 Experimental Data of RAF of EP Amorphous Alloys 658 11.3.2 Theoretical Calculation of RAF of EP Amorphous Alloys 668 11.4 Summary 685 References 685
12. Microscopic Theory of Electroless Plating 12.1 Why Use the Microscopic ab initio Theory to Investigate the EP Process? 694 12.2 Ab initio Computational Methods 695 12.2.1 Calculation Methods and Program Package 695 12.2.2 Selection of the Basis Sets 695 12.2.3 Selection of Oxidation Pathway 697 12.2.4 Solvation Effect 697 12.2.5 Catalytic Activity of Metal Surfaces 698 12.3 Theoretical Results Obtained by Ab Initio Methods 699 12.3.1 Reaction Mechanisms of EP Processes for Various Reductants 699 12.3.2 Detailed Investigation of Atomic Interaction Between Reductants and Metal Surfaces 711 12.3.3 The Role of Stabilizer and Plating Rate in EP 719 12.4 Summary and Prospective 724 References 725
Index 729
非晶态和纳米合金的化学镀-制备原理.微观结构和理论 作者简介
张邦维,湖南大学应用物理系,教授、博导,在物理和材料科学领域从事教学和科研愈50年,他的研究集中于纳米和非晶态材料, EP合金镀层,合金热力学和理论,EAM理论与应用,其成果得到国内外学术界的广泛引用和承认。他曾获得过德国马普奖学金,并两次在德国IPP(等离子体物理所)合作研究工作,也曾两次在美国弗吉尼亚大学材料科学工程系合作研究。他和他的研究组在纳米材料工作过20多年,集中于纳米材料各种制备方法及其形成理论上。
|
|
http://book.00-edu.com/tushu/kj1/202008/2669668.html |