帝国软件 首页 > 图书 > 科技 > 正文 返回 打印

复变函数与积分变换

  2020-07-13 00:00:00  

复变函数与积分变换 本书特色

《复变函数与积分变换》结合理工科专业的特点,介绍了复变函数与积分变换的基本知识与基础理论。内容包括复数与复变函数、解析函数、复变函数的积分、幂级数、洛朗展式与孤立奇点、留数理论及其应用、傅里叶变换和拉普拉斯变换共8章内容,并精选了大量的自测题,题型丰富,附有详细答案,在附录中还给出了积分变换简表等内容。全书具有以简驭繁、循序渐进、层次分明的特点。    《复变函数与积分变换》可作为高等院校理工科专业(包括信科专业)本科教材,也可作为远程教育教学教材及自学用书。另外,还可供一般的数学工作者及工程技术人员作为参考用书。

复变函数与积分变换 目录

第1章 复数与复变函数
 1.1 复数
 1.2 复数的几何表示
 1.3 平面点集的一般概念
 1.4 复变函数
第2章 解析函数
 2.1 解析函数的概念
 2.2 解析函数与调和函数的关系
 2.3 初等函数
 2.4 多值函数与保形变换
第3章 复变函数的积分
 3.1 复变函数积分的概念
 3.2 柯西积分定理
 3.3 柯西积分公式
 3.4 解析函数的高阶导数
第4章 幂级数
 4.1 复级数的基本性质
 4.2 幂级数
 4.3 解析函数的泰勒展式
 4.4 解析函数零点的孤立性
第5章 洛朗展式与孤立奇点
 5.1 洛朗展式
 5.2 解析函数的孤立奇点
 5.3 解析函数在无穷远点的性质
 5.4 整函数与亚纯函数
 5.5 平面向量场——解析函数的应用
第6章 留数理论及其应用
 6.1 留数
 6.2 用留数定理计算实积分
 6.3 辐角原理及其应用
第7章 傅里叶变换
 7.1 傅里叶变换的定义
 7.2 单位脉冲函数及其傅氏变换
 7.3 傅里叶变换的性质
 7.4 卷积
第8章 拉普拉斯变换
 8.1 拉普拉斯变换的定义
 8.2 拉普拉斯变换的基本性质
 8.3 由像函数求本函数
 自测题
 自测题1
 自测题2
 自测题3
 自测题4
 自测题5
 自测题6
 自测题7
 自测题8
 自测题9
 自测题10
 自测题11
 自测题12
 自测题13
 自测题14
 自测题15
 自测题16
 自测题17
 自测题18
 自测题19
 附录a 傅里叶变换简表
 附录b 拉普拉斯变换简表
 中英文单词对照
 参考文献 复变函数与积分变换

http://book.00-edu.com/tushu/kj1/202007/2631206.html