帝国软件 首页 > 图书 > 科技 > 正文 返回 打印

微分方程数值方法引论

  2020-07-11 00:00:00  

微分方程数值方法引论 本书特色

This book shows how to derive,test and analyze numerical methods for solving differential equations,including both ordinary and partial differential equations.The objective is that students learto solve differential equations numerically and understand the mathematical and computational issues that arise whethis is done. Includes aextensive collectioof exercises,which develop both the analytical and computational aspects of the material. Iadditioto more tha100 illustrations,the book includes a large collectioof supplemental material: exercise sets,MATLAB computer codes for both student and instructor,lecture slides and movies.

微分方程数值方法引论 内容简介

POD产品说明: 1. 本产品为按需印刷(POD)图书,实行先付款,后印刷的流程。您在页面购买且完成支付后,订单转交出版社。出版社根据您的订单采用数字印刷的方式,单独为您印制该图书,属于定制产品。 2. 按需印刷的图书装帧均为平装书(含原为精装的图书)。由于印刷工艺、彩墨的批次不同,颜色会与老版本略有差异,但通常会比老版本的颜色更准确。原书内容含彩图的,统一变成黑白图,原书含光盘的,统一无法提供光盘。 3. 按需印刷的图书制作成本高于传统的单本成本,因此售价高于原书定价。 4. 按需印刷的图书,出版社生产周期一般为15个工作日(特殊情况除外)。请您耐心等待。 5. 按需印刷的图书,属于定制产品,不可取消订单,无质量问题不支持退货。

微分方程数值方法引论 目录

Preface

1 Initial Value Problems
1.1 Introduction
1.1.1 Examples of IVPs
1.2 Methods Obtained from Numerical Differentiation.
1.2.1 The Five Steps
1.2.2 Additional Difference Methods
1.3 Methods Obtained from Numerical Quadrature
1.4 Runge——Kutta Methods
1.5 Extensions and Ghost Points
1.6 Conservative Methods
1.6.1 Velocity Verlet
1.6.2 Symplectic Methods
1.7 Next Steps
Exercises

2 Two-Point Boundary Value Problems
2.1 Introduction
2.1.1 Birds oa Wire
2.1.2 Chemical Kinetics
2.2 Derivative ApproximatioMethods
2.2.1 Matrix Problem
2.2.2 Tridiagonal Matrices
2.2.3 Matrix Problem Revisited
2.2.4 Error Analysis
2.2.5 Extensions
2.3 Residual Methods
2.3.1 Basis Functions
2.3.2 Residual
2.4 Shooting Methods
2.5 Next Steps
Exercises

3 DiffusioProblems
3.1 Introduction
3.1.1 Heat Equation
3.2 Derivative ApproximatioMethods
3.2.1 Implicit Method
3.2.2 Theta Method
3.3 Methods Obtained from Numerical Quadrature
3.3.1 Crank-NicolsoMethod
3.3.2 L-Stability
3.4 Methods of Lines
3.5 Collocation
3.6 Next Steps
Exercises

4 AdvectioEquation
4.1 Introduction
4.1.1 Method of Characteristics
4.1.2 SolutioProperties
4.1.3 Boundary Conditions
4.2 First-Order Methods
4.2.1 Upwind Scheme
4.2.2 Downwind Scheme
4.2.3 blumericul Domu'm of Dependence
4.2.4 Stability
4.3 Improvements
4.3.1 Lax-Wendroff Method
4.3.2 Monotone Methods
4.3.3 Upwind Revisited
4.4 Implicit Methods
Exercises

5 Numerical Wave Propagation
5.1 Introduction
5.1.1 SolutioMethods
5.1.2 Plane Wave Solutions
5.2 Explicit Method
5.2.1 Diagnostics
5.2.2 Numerical Experiments
5.3 Numerical Plane Waves
5.3.1 Numerical Group Velocity
5.4 Next Steps
Exercises

6 Elliptic Problems
6.1 Introduction
6.1.1 Solutions
6.1.2 Properties of the Solution
6.2 Finite Difference Approximation
6.2.1 Building the Matrix
6.2.2 Positive Definite Matrices
6.3 Descent Methods
6.3.1 Steepest Descent Method
6.3.2 Conjugate Gradient Method
6.4 Numerical Solutioof Laplace's Equation
6.5 Preconditioned Conjugate Gradient Method
6.6 Next Steps
Exercises

A Appendix
A.1 Order Symbols
A.2 Taylor's Theorem
A.3 Round-Off Error
A.3.1 FhnctioEvaluation
A.3.2 Numerical Differentiation
A.4 Floating-Point Numbers

References

Index 微分方程数值方法引论

http://book.00-edu.com/tushu/kj1/202007/2629018.html