泛函分析导论-(第二版) |
|
2020-07-02 00:00:00 |
|
泛函分析导论-(第二版) 内容简介
本教材是学习泛函分析课程的一本入门教材,是针对中国学生编写的一本英文教材,在选材上吸收了国外的优秀本科生教材的一些精华;在编写上考虑了与中国学生所具备的基础知识衔接性,在充分地反映泛函分析中的核心内容的前提下,突出重点;在内容的处理上,体现了由浅入深,循序渐进的原则,用大量的例题对度量空间、赋范线性空间、线性算子与线性泛函、内积空间与各种算子及它们的谱分解的概念、关系、性质进行了演绎、推导与论证,
泛函分析导论-(第二版) 目录
Contents Preface i Introduction iii List of Symbols vii Chapter 1 Metric Spaces 1 1.1 Preliminaries 1 1.2 Definitions and Examples 6 1.3 Convergence of Sequences in Metric Spaces 12 1.4 Sets in a Metric Space 17 1.5 Complete Metric Spaces 25 1.6 Continuous Mappings on Metric Spaces 33 1.7 Compact Metric Spaces 38 1.8 Banach Fixed Point Theorem 46 Chapter 2 Normed Linear Spaces. Banach Spaces 57 2.1 Review of Linear Spaces 57 2.2 Norms in Linear Spaces 59 2.3 Examples of Normed Linear Spaces 65 2.4 Finite-Dimensional Normed Linear Spaces 77 2.5 Linear Subspaces of Normed Linear Spaces 83 2.6 Quotient Spaces 90 2.7 Weierstrass Approximation Theorem 94 Chapter 3 Inner Product Spaces. Hilbert Spaces 101 3.1 Inner Products 101 3.2 Orthogonality 114 3.3 Orthonormal Systems 123 3.4 Fourier Series 138 Chapter 4 Linear Operators. Fundamental Theorems 145 4.1 Bounded Linear Operators and Functionals 145 4.2 Spaces of Bounded Linear Operators and Dual Spaces 162 4.3 Banach-Steinhaus Theorem 173 4.4 Inverses of Operators. Banach's Theorem 180 4.5 Hahn-Banach Theorem 190 4.6 Strong and Weak Convergence 203 Chapter 5 Linear Operators on Hilbert Spaces 215 5.1 Adjoint Operators. Lax-Milgram Theorem 215 5.2 Spectral Theorem for Self-adjoint Compact Operators 229 Chapter 6 Differential Calculus in Normed Linear Spaces 257 6.1 Gateaux and Frechet Derivatives 257 6.2 Taylor's Formula, Implicit and Inverse Function Theorems 270 Bibliography 279 Index 283
|
|
http://book.00-edu.com/tushu/kj1/202007/2625953.html |