现代多粒子物理-原子气体.纳米结构和量子液体-第二版-(影印版) 本书特色
本书是影印英文版物理学专著,原书由世界科技出版社于2008年出版。多粒子物理是凝聚态物理研究的对象和基础。本书作者具有丰富的教学和科研经验,其讲解力求深入浅出,尤其对于数学公式的推演,更是如此。因此,这本书不是那种令人望而却步的艰涩之作,读者会在作者的指引下,走到研究的前沿,并打下坚实的基础。
现代多粒子物理-原子气体.纳米结构和量子液体-第二版-(影印版) 内容简介
本书旨在阐述刻画玻色和费米系统性质的理论方法,研究的具体对象包括金属团簇,量子点、线、环,分子,束缚费米和玻色原子,氦液滴,不同维数和几何以及有无磁场等情况下的电子气等等。在第二版中还加入了如杂化结构中的自旋—轨道耦合,量子线的导电性,纳米结构的导磁性等等内容。本书适合具有一定量子力学基础,并对凝聚态物理基本概念有所了解的研究生和本科生阅读,也可作为凝聚态领域科研工作者的参考书。
现代多粒子物理-原子气体.纳米结构和量子液体-第二版-(影印版) 目录
preface
preface to the second edition
chapter 1 the independent-particle model
1.1 introduction
1.2 bosons
1.3 fermions
1.4 matrix elements of one-body operators
1.5 matrix elements of two-body operators
1.6 density matrices
1.7 the ideal bose gas confined in a harmonic potenti
1.8 the fermi gas
1.8.1 excited states
1.8.2 polarized fermi gas
1.8.3 the fermi gas in two dimensions with rashba interaction
1.9 finite temperature and quasiparticles
chapter 2 the hartree-fock theory
2.1 introduction
2.2 the hartree-fock method for fermions
2.2.1 examples of physical systems iyeated by the hartree-fock method
2.2.2 examples of infinite systems treated by the hartree-fock method
2.3 the hartree-fock method for bosons
2.4 the gross-pitaevskii equations
2.5 hartree-fock in second quantization language
2.6 hartree-fock at finite temperature
2.7 hartree-fock-bogoliubov and bcs
2.8 appendix: second quantization
chapter 3 the brueckner-hartree fock theory
3.1 introduction
3.2 the lippman-schwinger equation
3.3 the bethe-goldstone equation
3.4 examples of application of the bhf theory
3.4.1 the one-dimensional fermion system
3.4.2 ultracold highly polarized fermi gases
3.5 numerical results of bhf calculation in different systems
3.6 the g matrix for the 2d electron gas
3.6.1 decomposition in partial waves
3.6.2 the separable approximation
3.6.3 the g matrix expansion
3.6.4 numerical results and discussion
3.7 the g matrix for confined electron systems
3.7.1 effective interaction in confined electron systems
3.8 the bbp method
3.8.1 appendix
chapter 4 the density functional theory
4.1 introduction
4.2 the density functional formalism
4.3 examples of application of the density functional theory
4.3.1 the thomas-fermi theory for the atom
4.3.2 the gross-pitaevskii theory for the ground state of a dilute gas of bosons
4.3.3 the thomas-fermi approximation for the fermi gas confined in a harmonic potential
4.4 the kohn-sham equations
4.5 the local density approximation for the exchange-correlation energy
4.6 the local spin density approximation (lsda)
4.7 inclusion of current terms in the dft (cdft)
4.8 the ensemble density functional theory (edft)
4.9 the dft for strongly correlated systems: nuclei and helium
4.10 the dft for mixed systems
4.11 symmetries and mean field theories
chapter 5 the confined 2d electron gas in a magnetic field
5.1 introduction
5.2 quantum dots in a magnetic field
5.2.1 the ωo》ωc case
5.2.2 the ωc 》ωo case
5.2.3 the maximum density droplet (mdd) state
5.3 the fractional regime
chapter 6 spin-orbit coupling in the confined 2d electron gas
chapter 7 monte carlo methods
chapter 8 the linear response function theory
chapter 9 the linear response function in different models
chapter 10 dynamic correlations and the response function
chapter 11 the hydrodynamic and elastic models
index