(俄罗斯)波斯特尼科夫(M.M.Postnikov)[著] 本书特色
This book contains a systematic and comprehensive expositioof Lobachevskiageometry and the theory ofdiscrete groups ofmotions iEuclideaspace and Lobachevsky space. It is divided into two closely related parts: the first treats the geometry ofspaces ofconstant curvature and the second discrete groups of motions of these. The authors give a very clear account of their subject describing it from the viewpoints of elementary geometry, Riemanniageometry and group theory. The result is a book which has no rivalithe literature.Part I contains the classificatioofmotions ispaces ofconstant curvature and non-traditional topics like the theory ofacute-angled polyhedra and methods for computing volumes of non-Euclideapolyhedra. Part II includes the theory of cristallographic, Fuchsian,and Kleiniagroups and aexpositioof Thurston's theory of deformations.The greater part of the book is accessible to first-year students imathematics. At the same time the book includes very recent results which will be ofinterest to researchers ithis field.
(俄罗斯)波斯特尼科夫(M.M.Postnikov)[著] 内容简介
POD产品说明:
1. 本产品为按需印刷(POD)图书,实行先付款,后印刷的流程。您在页面购买且完成支付后,订单转交出版社。出版社根据您的订单采用数字印刷的方式,单独为您印制该图书,属于定制产品。
2. 按需印刷的图书装帧均为平装书(含原为精装的图书)。由于印刷工艺、彩墨的批次不同,颜色会与老版本略有差异,但通常会比老版本的颜色更准确。原书内容含彩图的,统一变成黑白图,原书含光盘的,统一无法提供光盘。
3. 按需印刷的图书制作成本高于传统的单本成本,因此售价高于原书定价。
4. 按需印刷的图书,出版社生产周期一般为15个工作日(特殊情况除外)。请您耐心等待。
5. 按需印刷的图书,属于定制产品,不可取消订单,无质量问题不支持退货。
(俄罗斯)波斯特尼科夫(M.M.Postnikov)[著] 目录
Ⅰ.Geometry of Spaces of Constant Curvature
Preface
Chapter 1 Basic Structures
1 Definitioof Spaces of Constant Curvature
1.1 Lie Groups of Transformations
1.2 Groups of Motions of a RiemanniaManifold
1.3 Invariant RiemanniaMetrics oHomogeneous Spaces
1.4 Spaces of Constant Curvature
1.5 Three Spaces
1.6 Subspaces of the Space R
2 The ClassificatioTheorem
2.1 Statement of the Theorem
2.2 Reductioto Lie Algebras
2.3 The Symmetry
2.4 Structure of the Tangent Algebra of the Group of Motions
2.5 RiemanSpace
3 Subspaces and Convexity
3.1 Involutions
3.2 Planes
3.3 Half-Spaces and Convex Sets
3.4 Orthogonal Planes
4 Metric
4.1 General Properties
4.2 Formulae for Distance ithe Vector Model
4.3 Convexity of Distance
Chapter 2 Models of Lobachevskij Space
1 Projective Models
1.1 Homogeneous Domains
1.2 Projective ModelofLobachevskij Space
1.3 Projective EuclideaModelsThe KleiModel
1.4 "Affine" Subgroup of the Group of Automorphisms of a Quadric
1.5 RiemanniaMetric and Distance BetweePoints ithe Projective Model
2 Conformal Models
2.1ConformaISpace
2.2 Conformal Model of the Lobachevskij Space
2.3 Conformal EuclideaModels
2.4 Complex Structure of the Lobachevskij Plane
……
References