帝国软件 首页 > 图书 > 人文社科类图书 > 正文 返回 打印

Motion Control of Biomietic Swimming Robots-高机动仿生机器鱼设计与控制技术

  2020-06-21 00:00:00  

Motion Control of Biomietic Swimming Robots-高机动仿生机器鱼设计与控制技术 本书特色

本书围绕仿生机器鱼的高机动运动,结合仿生技术和智能控制方法,对仿生机器鱼的研制过程和机动控制进行了系统阐述,主要包括六方面内容:仿生鱼体波及鱼体形态学设计、机器鱼二维高机动精准控制、基于仿生CPG的机器鱼运动控制、机器鱼的三维机动转向控制、机器海豚俯仰及滚翻控制、机器海豚跃水运动控制。本书的每一章对所用机器鱼及机器海豚的平台研制、算法实现及实验验证均进行了详细介绍。各部分的内容既相互联系又相互独立,读者可根据自己的需要选择学习。

Motion Control of Biomietic Swimming Robots-高机动仿生机器鱼设计与控制技术 内容简介

本书列选中国政府“中国图书对外推广计划”,内容全面、系统、新颖、实用,不仅适用于普通高等院校信息科学、自动化、机电工程及相关专业的研究生、本科生及专科生的机器人学习课程,也可作为广大致力于机器人研究的科研人员和技术工作者了解水下仿生机器人基础知识及关键技术的参考资料和辅助读物。

Motion Control of Biomietic Swimming Robots-高机动仿生机器鱼设计与控制技术 目录

1 Introduction ........................................... 1
1.1 Introduction ........................................ 1
1.2 Hydrodynamic Modeling and Testing ..................... 3
1.2.1 Hydrodynamic Modeling ......................... 4
1.2.2 Hydrodynamic Experimental Techniques.............. 5
1.3 Kinematic Modeling and Control ......................... 8
1.3.1 Kinematic Measurement of Fish Swimming ........... 8
1.3.2 Motion Control ................................ 9
1.4 Learning Control and Motion Optimization ................. 11
1.4.1 Learning Fishlike Swimming ...................... 11
1.4.2 Motion Optimization ............................ 13
1.5 Coordination ....................................... 14
1.5.1 AFSA ....................................... 15
1.5.2 Coordinated Control of Multiple Robotic Fish .......... 16
1.6 Concluding Remarks.................................. 18
References ............................................. 19
2 Bioinspired Fish Body Wave Model Considering Linear Density ... 25
2.1 Introduction ........................................ 25
2.2 Problem Formulation ................................. 27
2.2.1 An Overview of Fish Body Wave ................... 27
2.2.2 Necessary Conditions of Steady Swimming ............ 28
2.3 Design of Body Wave Considering Linear Density ............ 29
2.4 Design of Fish Morphology: Two Cases Studies ............. 32
2.4.1 Design of Main Body ........................... 32
2.4.2 Formation of Caudal Fin and Its Counterpart........... 35
2.4.3 Formation of Pectoral Fin and Its Counterpart .......... 36
2.4.4 Formation of Pelvic Fin and Its Counterpart ........... 36
v
2.5 Simulation and Result Analysis .......................... 37
2.6 Discussion ......................................... 42
2.7 Concluding Remarks.................................. 43
References ............................................. 43
3 Implementing Flexible and Fast Turning Maneuvers
of Multijoint Robotic Fish ................................. 47
3.1 Introduction ........................................ 47
3.2 Analysis and Control of C-Start.......................... 49
3.2.1 Design of Stage 1 .............................. 50
3.2.2 Design of Stage 2 .............................. 53
3.2.3 Design of Stage 3 .............................. 55
3.2.4 Closed-Loop Control of the Turning Angle ............ 56
3.3 Experiments and Results ............................... 58
3.3.1 Experimental Setup ............................. 58
3.3.2 Experiments on the Blunt Fish ..................... 60
3.3.3 Experiments on the Slim Fish ...................... 63
3.4 Discussion ......................................... 66
3.5 Concluding Remarks.................................. 67
References ............................................. 68
4 CPG-Based Swimming Control ............................. 71
4.1 Introduction ........................................ 71
4.2 Overview of Robotic Fish Prototype ...................... 73
4.2.1 Mechatronic Design ............................. 73
4.2.2 Swimming Gaits Design.......................... 75
4.2.3 Hardware and Software Design of the Controller ........ 75
4.3 Design of a Two-Phase Control System .................... 77
4.3.1 A Two-Phase CPG Control Architecture .............. 77
4.3.2 CPG Model ................................... 78
4.3.3 Lower Reflex Model ............................ 79
4.3.4 Medium Sensory Feedback Model .................. 81
4.3.5 High Hierarchical Feedback Control Model ............ 83
4.4 FSM-Based Gait Transition ............................. 85
4.5 Swimming Performance Optimization ..................... 87
4.5.1 Swimming Performance Indicators .................. 87
4.5.2 Performance Under Consistent Phase Differences........ 88
4.5.3 Performance Under Inconsistent Phase Differences ...... 90
4.6 Test Results Analysis ................................. 91
4.7 Discussion ......................................... 94
4.8 Conclusion and Remark ............................... 97
References ............................................. 98
vi Contents
5 3D Maneuvering Control of a Robotic Fish ................... 101
5.1 Introduction ........................................ 101
5.2 Mechatronic Design of the Updated Robotic Fish ............. 102
5.2.1 Head Design .................................. 103
5.2.2 Pectoral Fins .................................. 104
5.2.3 Multilink Propulsive Mechanism ................... 105
5.3 Analysis and Control of 3D Maneuvers .................... 106
5.3.1 CPG Network ................................. 106
5.3.2 Rotational Maneuvers ........................... 108
5.3.3 Translational Maneuvers ......................... 112
5.3.4 Head Motion Control ............................ 113
5.4 Experiments and Discussion ............................ 114
5.4.1 Testing of Rotational Maneuvers ................... 114
5.4.2 Testing of Backward Swimming .................... 116
5.5 Discussion ......................................... 117
5.6 Concluding Remarks.................................. 119
References ............................................. 120
6 Control of Yaw and Pitch Maneuvers of a Multilink Dolphin
Robot ................................................ 123
6.1 Introduction ........................................ 123
6.2 Overview of the Dolphin Robot ......................... 125
6.3 Analysis and Control of Yaw Turn ....................... 127
6.3.1 Analysis of Yaw Turn ........................... 127
6.3.2 A Two-Segment Model for Yaw Turns ............... 127
6.4 Analysis and Control of Pitch Turn ....................... 128
6.4.1 Analysis of Pitch Turn ........................... 128
6.4.2 Design of the Unbending Phase .................... 129
6.4.3 Maintaining the Pitch Angle ....................... 132
6.5 Results and Discussions ............................... 134
6.5.1 Experimental Setup ............................. 134
6.5.2 Testing of Yaw Turns ........................... 135
6.5.3 Testing of Wide-Range Pitch Turns ................. 136
6.6 Discussion ......................................... 145
6.7 Concluding Remarks.................................. 147
References ............................................. 147
7 Leaping Control of Self-propelled Robotic Dolphin ............. 149
7.1 Introduction ........................................ 149
7.2 Theoretical Analysis of Dolphin Leaping Motion ............. 151
7.3 Motion Control of Leaping Robotic Dolphin ................ 154
7.3.1 Prototype of Leaping Robotic Dolphin ............... 155
7.3.2 AoA-Based Speed Control ........................ 158
7.3.3 Pitch Control .................................. 162
Contents vii
7.3.4 Roll Control .................................. 164
7.3.5 Yaw Control .................................. 164
7.3.6 Depth Control ................................. 165
7.4 Experiments and Results ............................... 165
7.4.1 Speed Tests ................................... 165
7.4.2 Leap Tests ................................... 167
7.5 Discussion ......................................... 169
7.6 Concluding Remarks.................................. 170
References ............................................. 171
8 Motion Control of Self-propelled Robotic Jellyfish .............. 173
8.1 Introduction ........................................ 173
8.2 Prototype of the Self-propelled Robotic Jellyfish ............. 174
8.2.1 Mechanical Design ............................. 174
8.2.2 Analysis for Barycenter Adjustment Mechanism
of the Robotic Jellyfish .......................... 178
8.2.3 Dynamic Analysis .............................. 181
8.3 Reinforcement Learning Based Attitude Control .............. 184
8.3.1 A Brief Introduction of Reinforcement Learning ........ 185
8.3.2 Attitude Control of the Robotic Jellyfish .............. 186
8.4 Experiments and Results ............................... 191
8.5 Discussion ......................................... 194
8.6 Concluding Remarks.................................. 195
References ............................................. 196
9 Summary and Outlook ................................... 197
9.1 Technical Contributions ............................... 197
9.2 Future Studies ...................................... 200
Index ...................................................... 203

Motion Control of Biomietic Swimming Robots-高机动仿生机器鱼设计与控制技术 作者简介

Junzhi Yu received the B.E. degree in safety engineering and the M.E. degree in precision instruments and mechanology from the North University of China, Taiyuan, China, in 1998 and 2001, respectively, and the Ph.D. degree in control theory and control engineering from the Institute of Automation, Chinese Academy of Sciences, Beijing, China, in 2003.
From 2004 to 2006, he was a Post-Doctoral Research Fellow with the Center for Systems and Control, Peking University, Beijing. He was an Associate Professor with the Institute of Automation, Chinese Academy of Sciences, in 2006, where he was a Full Professor in 2012. In 2018, he joined the College of Engineering, Peking University, as a Tenured Full Professor. His current research interests include intelligent robots, motion control, and intelligent mechatronic systems.

Junzhi Yu received the B.E. degree in safety engineering and the M.E. degree in precision instruments and mechanology from the North University of China, Taiyuan, China, in 1998 and 2001, respectively, and the Ph.D. degree in control theory and control engineering from the Institute of Automation, Chinese Academy of Sciences, Beijing, China, in 2003.
From 2004 to 2006, he was a Post-Doctoral Research Fellow with the Center for Systems and Control, Peking University, Beijing. He was an Associate Professor with the Institute of Automation, Chinese Academy of Sciences, in 2006, where he was a Full Professor in 2012. In 2018, he joined the College of Engineering, Peking University, as a Tenured Full Professor. His current research interests include intelligent robots, motion control, and intelligent mechatronic systems.


Min Tan received the B.Sc. degree from Tsinghua University, Beijing, China, in 1986, and the Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences (IACAS), Beijing, China, in 1990, both in control science and engineering.
He is currently a Professor with the State Key Laboratory of Management and Control for Complex Systems, IACAS. He has published more than 200 papers in journals, books, and conference proceedings. His research interests include robotics and intelligent control systems.

Motion Control of Biomietic Swimming Robots-高机动仿生机器鱼设计与控制技术

http://book.00-edu.com/tushu/sh1/202007/2614632.html