微分方程数值解 本书特色
《微分方程数值解》分为三大篇:第1篇为常微分方程数值解,包含了两章内容,分别介绍了常微分方程初值问题的理论基础和数值方法;第2篇为偏微分方程数值解,包含了六章内容,分别介绍了常用的有限差分、谱方法和有限元方法;第3篇为分数阶微分方程数值解,包含了三章内容,介绍了分数阶微积分的相关概念及算法、分数阶常微分方程和分数阶偏微分方程数值解解法,《微分方程数值解》的内容比较全面,基本涵盖了“微分方程数值解”常用的各种方法,将数学理论、数值方法与应用有机地结合起来,并以生动详细的实例为载体,较为详细地介绍了不同方法如何运用于不同的方程。
《微分方程数值解》可以作为普通高等院校研究生、本科生的“微分方程数值解”课程的教材,根据不同层次所需的教学学时数选择相应的教学内容;同时也可以作为科研工作者应用数学方法来解决实际问题的参考书。
微分方程数值解 内容简介
POD产品说明:
1. 本产品为按需印刷(POD)图书,实行先付款,后印刷的流程。您在页面购买且完成支付后,订单转交出版社。出版社根据您的订单采用数字印刷的方式,单独为您印制该图书,属于定制产品。
2. 按需印刷的图书装帧均为平装书(含原为精装的图书)。由于印刷工艺、彩墨的批次不同,颜色会与老版本略有差异,但通常会比老版本的颜色更准确。原书内容含彩图的,统一变成黑白图,原书含光盘的,统一无法提供光盘。
3. 按需印刷的图书制作成本高于传统的单本成本,因此售价高于原书定价。
4. 按需印刷的图书,出版社生产周期一般为15个工作日(特殊情况除外)。请您耐心等待。
5. 按需印刷的图书,属于定制产品,不可取消订单,无质量问题不支持退货。
微分方程数值解 目录
前言
第1篇 常微分方程数值解
引言
第1章 常微分方程初值问题的理论基础
第2章 常微分方程初值问题的数值方法
2.1 Euler方法
2.1.1 显式Euler法
2.1.2 隐式Euler方法
2.2 梯形方法
2.3 Runge—Kutta方法
2.3.1 Runge—Kutta方法
2.3.2 Runge—Kutta方法的构造
2.4 单步法的收敛性与相容性
2.4.1 单步法的收敛性
2.4.2 单步法的相容性
2.5 一般线性多步法
2.5.1 显式Adams方法(外插法)
2.5.2 隐式Adams方法(内插法)
2.6 一般线性多步法的收敛性和稳定性
2.6.1 线性差分方程的基本性质
2.6.2 一般线性多步法的收敛性和稳定性
第2篇 偏微分方程数值解
第3章 基本理论及概念
3.1 偏微分方程定解问题
3.2 差分方程
3.2.1 定解区域的离散化
3.2.2 差分格式
3.2.3 显式格式与隐式格式
3.3 截断误差和收敛性
3.3.1 截断误差的概念
3.2.2 推导截断误差的方法
3.3.3 差分格式的收敛性
3.3.4 差分格式的稳定性
3.4 差分格式的构造方法
3.4.1 数值微分法
3.4.2 积分插值法
3.4.3 待定系数法
第4章 椭圆型方程的有限差分方法
4.1 Dirichlet边值问题
4.2 五点差分格式
4.2.1 差分格式的建立
4.2.2 差分格式解的存在性
4.2.3 差分格式的求解
4.2.4 差分格式解的先验估计
4.2.5 差分格式解的收敛性和稳定性
4.2.6 数值计算与Matlab模拟
4.3 紧差分格式
4.3.1 差分格式的建立
4.3.2 差分格式的求解
4.3.3 差分格式解的收敛性和稳定性
第5章 抛物型方程的差分方法
5.1 一维线性抛物方程
5.2 向前差分格式
5.2.1 差分格式的建立
5.2.2 差分格式解的存在性
5.2.3 差分格式的求解
5.2.4 差分格式解的先验估计
5.2.5 差分格式解的收敛性和稳定性
5.3 向后差分格式
5.3.1 差分格式的建立
5.3.2 差分格式解的存在性
5.3.3 差分格式解的先验估计
5.3.4 差分格式解的收敛性和稳定性
5.4 Richardson格式
5.4.1 差分格式的建立
5.4.2 差分格式的求解
5.4.3 差分格式的不稳定性
5.5 Grank—Nicolson格式
5.5.1 差分格式的建立
5.5.2 差分格式解的存在性
5.5.3 差分格式解的先验估计
5.5.4 差分格式解的收敛性和稳定性
5.6 数值模拟
第6章 双曲型方程的有限差分方法
6.1 波动方程
6.2 显式差分格式
6.2.1 差分格式的建立
6.2.2 差分格式解的收敛性和稳定性
6.3 隐式差分格式
6.3.1 差分格式的建立
6.3.2 差分格式解的收敛性和稳定性
6.4 数值模拟
6.5 一阶双曲方程
6.5.1 迎风格式
6.5.2 积分守恒的差分格式
6.5.3 其他差分格式
6.5.4 数值模拟
第7章 谱方法
7.1 Fourier谱方法
7.1.1 指数正交多项式
7.1.2 一阶波动方程的Fourier谱方法
7.2 Chebyshev谱方法
7.2.1 Chebyshev多项式
7.2.2 Gauss型积分的节点和权函数
7.2.3 数值分析
7.2.4 数值模拟
7.2.5 热传导方程的应用
第8章 有限元方法
8.1 边值问题的变分形式
8.1.1 Sobolev空间Hm(I)
8.1.2 a(u,u)基本性质
8.2 有限元法
8.2.1 Ritz—Galerkin法
8.2.2 有限元法构造
8.3 线性有限元法的误差估计
8.3.1 H1 估计
8.3.2 L2 估计
8.4 二次元
8.4.1 单元插值函数
8.4.2 有限元方程的形成
8.5 椭圆型方程边值问题的有限元法
8.5.1 变分原理
8.5.2 Ritz—Galerkin方法
8.5.3 有限元方法
8.6 抛物型方程初边值问题的有限元法
第3篇 分数阶偏微分方程数值解
引言
第9章 分数阶微积分的相关概念及算法
9.1 分数阶微积分定义及其相互关系
9.2 Riemann—Liouville分数阶微积分的G算法
9.3 Riemann—Liouville分数阶导数的D算法
9.4 Riemann—Liouville分数阶积分的R算法
9.5 分数阶导数的L算法
9.6 分数阶差商逼近的一般通式
9.7 经典整数阶数值微分、积分公式的推广
9.7.1 经典向后差商及中心差商格式的推广
9.7.2 插值型数值积分公式的推广
9.7.3 经典线性多步法的推广(Lubich分数阶线性多步法)
第10章 分数阶常微分方程数值解方法
10.1 直接法
10.2 间接法
10.2.1 R算法
10.2.2 分数阶预估—校正方法
10.3 差分格式
10.4 误差分析
第11章 分数阶偏微分方程数值解解法
11.1 空间分数阶对流一扩散方程
11.2 时间分数阶偏微分方程
11.2.1 差分格式
11.2.2 稳定性分析(Fourier—VonNeumann方法)
11.2.3 误差分析
11.3 时间—空间分数阶偏微分方程
11.3.1 差分格式
11.3.2 稳定性及收敛性分析
参考文献